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AN APPLICATION OF TIlE BRAUNBEK METHOD TO THE

' MAGGI-RUBINOWICZ FIELD REPRESENTATION

ABSTRACT

The Braunbek method is applied to the generalized vector potential associated with the Maggi-

Rubinowicz representation. Under certain approximations, an asymptotic evaluation of the vector

potential is obtained. For obse_ation points away from caustics or shadow bout, the field

• derived from this quantity is the same as that determined from the geometrical theory of diffraction

on a singly diffracted edge ray. "the paper concludes with an evaluation of the field for the simple

> case of a plane wave normally incident on a circular aperture, showing that the field predicted by
-- i ,J

' the Maggi-Rubinowicz theory is continuous across the shadow boundary.
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AN APPLICATION OF THE BRAUNBEK METHOD TO THE

' MAGGI-RUBINOWICZ FIELD REPRESENTATION

INTRODUCTION

The Maggi-Rubinowicz (M-R) representation (1"3) for the field is derived by means of Stokes'

theorem which transforms an open surface integral, the integrand of which has zero divergence, into

a line integral around the boundary of the surface and certain singular contributions interior to this

: boundary. This type of field representation is usually applied under a physical optics approxima-

tion, which, in the case of diffraction by an aperture, is taken to denote the approximation by

which the actual field within the aperture is replaced by the unperturbed incident field. There is

nothing in the theory, however, that requires this assumption.

Another common high frequency approximation is the Braunbek method (4"5), which takes the field

near an edge point as that which would exist if the edge were replaced by a half plane oriented in

the plane of the aperture with its edge !ying along the tangent vector at the point of interest. An

application of this method to the various surface integral representations for the field has been

shown to produce results that closely resemble those predicted by the geometrical theory of diffrac-

tion (GTD) (6"7). Since the M-R theory is, in a sense, only a restatement of certain surface integral

representations, there is reason to expect that the Braunbek method should also serve to illuminate

the relationships between the M-R theory and GTP

In this paper, the Braunbek method is appLiedto the generalized vector potential of M-R(I). Under

certain approximations, a closed form expression for this quantity is obtained. With this vector

potential, an asymptotic evaluation of the field is carried out for observation points away from

caustics and shadow boundaries. It is found that the expression for the field is identical to a result

derived by Keller et al.(6). In the last section of the paper, an explicit calculation of the M-R field

is carried out for a simple case. showing that the field is continuous across the shadow boundary.



ThE RAYLEIGH INTEGRAL REPRESENTATION

" Consider a thin screen in the z = 0 plane with an aperture A. The tangent to the rim of the aperture

,._ is taken to be continuous. If the sources of the incident field are located in the z < 0 half space,

and if the field is zero on the screen, then the Rayleigh representation for the field in the z > 0 half

space is(g)

= 2 ._"U(X') V 'G " i ds' (1)U
ld,

--'_" A

°. The region of integration is the aperture;x, _x'are, respectively, the position vectors of the observer

• and of a "source" point in the aperture. The primed derivatives are to be taken with respect to the

_'* "source coordinates". The quantity G is the Green's function, where, for an e-i_°t time convention

.....: G = eikr/47rt (2)

: and

" _'G = - _ (ik - l/r) G (3)

= (_- x')/l x- x' I (4)

•" r=lx-x' I (5)

" The quantity k in (2) and (3) is the wavenumber which equals 21r/'Awhere _ is the wavelength of the

:.- incident field.
o ,

, The M-R analogue of (I) is(8) ,

=__ - frO" _d_'+_" _w. _d£' (6)
([,.,/

i

The path of integration of the first term, the boundary diffraction integral, is taken in a counter-
7

clockwise sense (when viewed from z > 0_ around the rim of the aperture. The second term repre-

sents the integrations around the singularities of W_,taken in a clockwise sense. Following Miya-
7

•.... moto and Wol)( 1')the singularities of W are assumed to be isolated poles, finite in number. A

•- corresponding term that accounts for the singularities in W_! is absent in (6) because W_Iis never

qngular over the aperture (s).
o



_" The generalized vector potentials for the observation point and its image, W, WI, are given by (1)

W = -G _ x Se lkt V' u(._' + t§) dt +_W (7)
" O

WI = - G sI x eikt V' u(x' + t §i)dt + (_-m)I (8)

where
o.

i =- (9)

)_ iI= - rl= §- 2(_"_)_- (1O)

The end point contributions to the vector potentials, W__and (_-_)I are defined by Miyamoto and

' _ Wolf (1). In this paper they will be neglected. The effect these additional terms might have on the

_ solutionisdiscussedlateron.

• " Si:'ce the Braunbek method is valid only in the vicinity of the edge, it is applied only to the first

*= term of (6). For the second term of (6), the vector potential corresponding to the physical optics

i _ approximation will be used.

APPLICATION OF THE BRALrNBEK METHOD TO THE VECTOR POTENTIAL

For aperture diffraction, the physical optics approximation takes the field in the aperture to be

.... "- equal to the unperturbed incident field. For the same problem, the Braunbek method assumes the

"_"' • field near a point _ on the aperture rim as that which would exist by replacing the edge by a half

_._,
,.:. plane oriented in the plane of the screen with its edge aligned along the tangent vector at _.

N
In this paper, the incident field, u o, is approximated in the vicinity of an edge point _ by

:" uo = A(£) eik¢_(_).The phase _(_) is assumed to satisfy the eikonal equation

I (ll)

so that a unit vector 15can be defined by V'_ = P. Again, following Keller et al.(6), the incident

field at _ is associated with a plane wave propagating the direction 15with an amplitude A(_).

The solution to this half plane problem, with u = 0. on the plane, can be written in the form



(Appendix)
..o

u = u i - ur (12)

i [ ,

!_ ur = lr-'_ A(£)e_¢(£)"n/4)e-_[pcos(¢_¢o) sin0o- z cos0o] Fc (_l) (13)
,, 2

_1 = - el 71 (14)

_2 = - er 3'2 (15)

3"_= (2k p sinOo)½ I cos_(0_0 o) I (16)
i

er = sgn (cos ½(¢:t:¢_o)) (17)
+1 x>O

sgn (x) = (I 8)
-Ix<0

Fc(x) = ; eit2 dT
g

The notation follows that of James (9) and is defined in the Appendix.

To use (12) through (17) in (7) and (8) it is convenient to first express the above formulas in terms

of quantities independent of a particular coordinate system. At each point £ on the rim, we choose

the orthogonal vectors (£, fi, _) where _ is the tangential unit vector of the rim at t (in a counter-

clockwise sense when viewed from z > 0) and h is the unit vector from £ directed into the aperture.

Defining _ to be a unit vector from £ to an arbitrary point and t the associated distance along the

vector to this point, then

• _ = - sin# sine (19)

/_. fa= - sinO cos_ (20)

• _ = cosO (21)

I5 " _ = sinOo sin¢_o (22)

f_ "fi = sin0 o costo (23)

15' _ = cosOo (24)

and

p = t sinO (25)

z = t cosO (26)
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" where

_" 0=V'@ (27)

' : Expressing the variables in (12) through (17) in terms of the quantities _, f_,i, fi, i, t, then
o

..... ; ui(_, t) = Ir"14'A ei(k@-_/4)eik t f) "I" _ Fc (aI) (28)

_: "..... ur(_,t) = a''_ A ei(k@-n/4)eik t f) .i. _ F¢(a2) (29)
c.

i _ " where

7 __= t_+ rift+ _.i (30)
z .

,. i.= (( + _fi - _ (3 I)

i _ " (xl ((_' t)- ei (_) _t (_, t) (32)

i ° a2 (_' t) = er (_) 72 (_, t) (33)

:° 3'1(_,t) = (kt)t_(T(_)-_ "_It •_)_" (34)

• : 3'2 (_' t) = (kt) _ (T(_) - _)"_t "_)_ (35)
! L"

L _ r i

er(_)--sgn{sgn(_" z:)((_"_It"_)_-_" h)_ ((_"-It"I_)_'+P" n)_"" (36)

:' ± .£t e" -f'" }
' with

:. T (_).= (_) "It" _))_ (_ '! t • (_)_ (37)

::, I t.=I- _ (38)

' _ =j,- _ (39)

- To compute the_7 'u appearing in the integral of (7) and (8), a spherical coordinate system is chosen

with the origin at a point _ on the rim with the polar axis in the _ direction. In this sytem, the argu-

ments el"_'u, x' + t g and x_'+ t Sl can be written as t_ with/_ evaluated at g and gl, respectively.

..... However. we will continue to write the arguments of u as IL t since these quantities do not

.. always appear together, In spherical coordinates

au I Ou I au.

t sin¢ i)O
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where 0 is the polar angle measured from the _ vector to _ and _ is the azimuthal angle measured
o

"° between the -fi direction and the.projection of _ onto the fi--_plane. For an observer on the

+", axis, a positive _ angle is measured in a counterclockwise sense from the --fi axis_"Note that these

are the same angles as defined by (19)-(21). Equation (6) shows that only the _ component of

(X_¢- W_I) is needed to compute the field. Since _ X _ = 0, _ X 0 • _ = 0 and _ X _. _ = sin0, then

S _I' for the vector potential W,

- i t_XV'u(_,t)l"_-Lau(*, t)
• ":': t a"-_ (41)

_- _ _ so that .1

i _ _eikt 8u(_, t)l_ i :W • _ = - G dt (42)
- o t _¢_

"L A similar simplification can be carried out for WI. Therefore,
o,

; (i 0,-,1)oo,• em au __:.(_,
_= o " __-_WI)' _=-G T _'_(_.t) _=_ _=sI dt (43)

i + "

. In computing _-_u . the following relationships are used

_- 0¢,(f,.i. _)=f,._ x i). _ (44)
• a__
°

! _:_ _ =t(t,e)=_i2=..._._(_:)r,t
_r (_:)kt

": _ =2 (t_) = ' f_" f_t X _)" _ (47)
.,,_ 2_t2

.... which give

_ _ u(_.t) = _"_' A e i(k$ - hi4) . B(_) eikt P(_) Fc (=1) -C(_) e ikt Q(_) Fc(o_,)
• 0¢ - (48)

_+. .....kt _B(_)efl_tl_+)+ i_ el(,)C(+)e_tO(+)+ "2. L'l ,+ =2 el(,)]}
+

with

7"

0
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Q(_):_"i" _ (5o)

: B(i)=f_. (It x _). _ (51)

c(b--_. (_x_). _ (52)

In finding the integrand of (43) from (48), a considerable amount of simplification is possible by

using the following relationships between _and _I

•I'_=15 "_'_I; P "I=.ii=f_.|=.i (53)

_,._ x _). _--- f_• (_ x b. -_i;b• (_ x _)"_z=-_" _ x i). _ (54)

ei (_) - - er (i I) (55)

e i (_i) = - er (i) (56)

k (X1 (_,t) = - % (,_i,t) (57)

: o_1 (_i,t) = - _x2 (i,t) (58)
L,
I Then (43) becomes

_f'_ Ae_(_+r)e"_r/4 { _02_-_I) " £= 4_r • 2ik eikt [B(i)e_ctP(g)F(al )
Om

: -C(i)eikt Q0) F(o_2)]dt+k fie ikt FB0)eiktP0)+i_ei(i) (59)
• o L 71

- C('--_)eikt Q(') + ia_ er(,) 1 dt }_. 72

where
X

F(x) = _ eit2 dt (60)
O

f_(s), (_(s) f3(s), C(s), are given by (49)-(53) with _ replacing 6. In (59) the arguments of a I and <x2

are § and t. Therefore o_I and cx2 can be evaluated from (32)-(36) by replacing _ with L

It is worth mentioning that the application of the Braunbek method here is somewhat different

than in Keller et al.(6) where the method was used to obtain an approximation of the field near the

edge in the plane of the aperture. Here. the method is also used to approximate the field near the

edge. but the vector potential requires that the field be evaluated along the path of the vectors

and _I" These vectors will be in the z = 0 plane only for observation points on the aperture or



t

screen. One consequence of this difference is the retention of the ei and er quantities in (59). In

Keller et al.(6), eI = l and er = -l, irrespective of the location of the observer.

L - To find a closed form expression for the vector potential (W_-W_I) • _, (59) is evaluated by using

[ "" the first term in an asymptotic expansion for largek. Since the Braunbek approximation is valid

i only in the vicinity of an edge (i.e. near t = 0), the upperlimit in the integrals of (59) will be

i _ ignored. In fact, ignoring the upperlimit is more than just a matter of convenience since the first

two terms of (59) do not converge. This problem is not necessarily a deficiency of the M-R theory

: but perhaps a consequence of having ignored the W- and (W--)Icontributions to vector.potential.

_' The results obtained by Miyamoto and Wolf (1) for a •convergentspherical wave (which is similar to

' the Braunbek method in the sense that neither satisfies the Sommerfeld radiation condition in

. three dimensions) suggest the possibility that the full expression for the vector potential would

• converge and even admit an evaluation of higher order terms in the asymptotic series. Since we

v : have not been able to compute W. and (_-")I, we obtain an expression for the first two terms by an 1
. integration by parts, evaluating the result only at the lower limit, and using the formula(6' 10)v

F..... _ e_ h(0 _r_ g(o) e_(°) + i _r/4_ -t-"_ g(t)dt~ (61)i o (kh'(o))_

• The last two integrals of (59) are of the same form as (61) and can be evaluated immediately.

o : From the results of the calculations and simplifications, the vector potential can be written

w_[)•_=A (_)e_¢(_(_)+r)- -- (l+ T (_,)+ (_• _)(i._))_
4a'r (62)

- ei(_)P"(It x_)•_ e'(_)_ x_)
_ (T(_)-I5 "It "t)_(l+[_'I*&) (T(_)-f_'J, t- (I+ __:_)

This formula can now be compared with the first term in the asl/mpt6tic expansion of (_W- _W1) •
2'

• . ,o_under the physicaloptics approx_matxon,_"

_ {IXP_ 1,_ - - = 4a'r Ll+gii _ i+gl f_ (63)

8

I _ ......... ,_. ....... :" ................



The comparison is made easier by noting that

_ P" (_t X _.).§= (§ X _). _ (64)

" (=ItX _1. _= (_I X _)" _ (651

: (l +_ .I. §)=I+_ •_ (66)

_.. (l +f)'=I" ,_)= l +_ '§I (67) ,
i-

r where

_-_ SI= § - 2 (§" _.)_ (10)

_ Therefore, the first terms in (62) and (63) differ by the factor ei (g) {[ 1 + T(D + (f_• _) (9 • _)1/

!; :'' ,:' [T (D - P "I=t "_1}_; the second terms by the factor er (_) { [ 1 +T (g) + (I3 • _) (_" J_)]/[T (D -

, COMPARISON OF M-R AND GTD

As a check on the vector potential given by (62), the boundm'y diffraction term of (6), u B, is evalu-

ated for large k when the observer is not close to a shadow boundary or caustic, i.e.
o o ;

_ us(x) = f _ - _wi)._d_' (68)

, where (__- _WI) • I_is given by (62).

_- • Recognizing that the saddle points of (68) occur when

! _ a'_'(_/+ r) = 0 (69)

"_ then since _/a_ _= _ • I5and ar/_ c= § • _ the saddle points are given by points on the rim _ = Rs_

...." forwhichi •fi= - i •L Usingtheformulaforan isolatedfirstordersaddlepointgives(lI)

"-':':-... i (k I_" + r"i)_
..... " " _=_d

where

,. _"+r" _ + _2r
•. = _R,2 aR,---_" (7I)

_ .... To compare ¢70) with the result of Keller et al.(6), fW_- W_)• _ is evaluated at _ • _ = - _ ' g and the ,

-:° result is expressed in terms of the angles _n, ¢, 0o, _ defined by f19) - (27). In making this trans-

r



formation, it is important to note that the vector _ in (19) - (21) is taken to be _, the unit vector

from the rim to the observer, where _= - _
! .

]- 'this procedure gives

A eik(_k+ r)
(W- WI ) ' i = [el(_) sgn(sin_(¢o-'¢)) see _(¢"0o)

41rr (72)

+ er(i) sgn(sin IA(Oo-t'¢))see H($-I@o)]

where both sides areevaluated at _ ' _ = - _ • _,.

Since only observation points"in the z > 0 half space are considered, it is not diff'cult to show that

ei¢._)sgn (sin½(¢o-¢_)) = - I (73)

er(g) sgn (sin _(¢_o+¢))= 1 (74)

To account for a different convention used by Keller et al.(6), let ¢o = a + ¢t/2 and ¢ = 0 + w/2.

Substituting these equations into (72) and using (73), (74) gives

uB(x)= _ A e_(o + r) era/4sgn(¢"+ r") i2 (2wl, I¢" + r" I)_ [sec _(0-'_) + csc zA(0+a)] (75), I

This is the same expression obtained by applying the Braunbek approximation directly to th_ Ray-

leigh representation and is also the field predicted by GTD on rays singly diffracted from aa edge(6).

ASYMPTOTICEVALUATIONOF THE M-RREPRESENTATIONFOR A SIMPLECASE

Although we have been uaable to show in general that the vector potential given by (62) leads to

fields that are continuous across the shadow boundary, there are special cases where this continuity

can be shown explicitly. It should be mentioned that under a physical optics approximatio'h Otis, 'I

et al.(12) and Takenaka et al.(13) have obtained asymptotic evaluations of the M-Rrepresentation !

for an on-axis gaussian beam incident on a circular aperture. Their work has shown the field to be

everywhere well behaved. Here we will treat the simpler case of a plane wave normally incident on

a _ircular aperture of radius a. but use the vector potential given by (62). i

For a normally incident plane wave of unit amplitude, _62) reduces to

i
J

10
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" ORI_it_/_L i__ ,,.:
,, ovPr,o,__ul_Li,",/

eIkr [" (_ X _. _) el (_t)
(w-w l) . _=-4_r"_"(l +(_"-It"_)_)_"

.. - - L((i" "I t ' _')_"+ _'' _)½ (i -_" _:)
(76)

_: (_'iX "2• _) er (-_) "l

;: ((i" • At " i')_i + rl " z)tA ( 1 - 21 ' i) J
where g = -2 and rI = _- 2 (i- • i) L

, The total field in the x-z plane is

.-- u(x_.)= § fW_- _WI) • _ d_' + eikz [U(x + a) - U(x - a)] (77)

i. where the second term represents the geometrical op.tics field. The boundary diffraction integral
_a

" can be written as the sum of I1 and 12,

,. I1 + I2 ffi§ (_- - W-l)*_'d£' (78)

where

.... " 3n/2

_X__,,.a_' eikr11(¢') _ d_' (79)I1= _'r%/2 i--
3nl2

12=_ eikr/2(_,) i'i X_ • ___- /2 1 - 21 d$' (80)

and

_=_ (81)
o.

' ei(--'f) ( l + (_ .I t • i')½) ½
Y_($3 = (8 2)

r ((i' • I t • _')_ + t ' 2)_

•; f2(0,) = er(---f") ( 1 + (_ "_,t " i')½)½ (83)
r ((2 "i t • _')½ + rl " _')½

: ei(-_) = 1 (84)

The expression for I, can be evaluated by means of the standard formula for an isolated saddle

point. The saddle points are determined from the equation _ • V'r = - Q' i"= O. Since _ ffi- _ sin0'

_ . + _,cos¢' and f = t_ix-a cos¢'1 - 9 a sin0' + iz)/r then saddle points occur at est = 0 and $s2 = _r.

Noting that er[ - _ (0st)] = sgn (a-x) and er[ - t(Os2)] = sgn (a + xl. a straightforward calculation

ll



., ,,i .

,, gives
fl

" 12""2" [_x(rl-z))_ (rI+z) + (x(r2"z))_(r2+z) (85)c .. ..

g'_'c, "

with
7

.... i rI = ((a - x)2 + z2)_ (86)

_ r2 = ((a+ x)2 + z2)½ (87)
_! _,_, .'.

i°"_',,,, By expanding(85)aboutthesmallparameterxq:a,itcanbe shown that12iscontinuousacrossthe

,,_,,) shadow boundariesatx = ± a.

'i

"_ • Turning to the expression for I 1, it can be shownthat the steepest descent path may be close to the

pole at _"• _.= 1. Therefore, the standard formula no longer applies (11). In the following develop-

' _/:_ ment we make useofthefactthatthefieldissymmetricaboutthez-axis.Therefore,itissufficient

to consider only observation points in the x-z plane for which x > 0. Since the saddle points of I 1

i are th: same as for 12, then ¢sl = 0 and _s,2 = a'. In the complex _-plane, the steepest descent path

% _ (SDP)whichpassesthrough_ isgivenby Im (i r (0)) = Im (i r (_)) whereIm denotes the

: ,, h'naginarypart.Graphs of the steepest descent p_ths are given by Takenaka et ai__I}

,)

" Solving the equation _" _ = I for _ yields poles at

• _, =iCosh-_q (88)
_•-_2:_ d,h. "

ep_ = - i Cosh-1 q (89)

where

q = (x 2 + a2)/2ax (90)

• Because of the presence of r in the denominator of the integral, I i also has algebraic singularities at

' ebi = +-iCosh q' (91)

q'= (x2 + a2 + z2)/2ax ('_2)

For z >> a, these contributions can be ignored.

12
•i

..... . , ._ . .



In tile deformation from the original integration path to tile steepest descent paths, no poles are

crossed so tile contributions from tile residues that occur for tile case of a gaussian beam(13) are
i

absent in this case. Furthemlore, tile poles can be located only in the vicinity of the SDP 1 ( since
o

we have chosen x > 01. Tile integration along SDP 2 therefore can be e,_aluated in tile same manner

I2 '.... _i as . '

,..r,,,

_'i Using the formula derived by Felsen and Marcuvitz(l I) (with a modification to account for the

:_i presence of two poles) then

_ ,, 4_ II ""- a eikr(¢sl) _gn(lm bi)Z_._r_" e-k b_ Q(-i b i ku sgn (Ira bit) + Ri
_3°_ t 2 bi _,k] .J

.... ( ')o}' + hi fl (_t) f'%7" i (93)1-_ _. t

- a eikr(¢s2) h2 1_ (¢s: _ i

s2

where

Q(x) = e-t2 dt (94) fl
x

. The quantity Ri is the residue offl (_)(_X_.°_)/(l-f'i) at the pole _pi (i -- i, 2) and

._ hi ; (-2/ilr"(_)!) _ i -- 1, 2 (951

; .,-, bl= [i(r(¢sl)-rl_pi))] _ i = !. 2 (96)

where the argument of b i is to be chosen the same as the argument of the quantity (¢pi - Cst )/hi

_ as Cpi approaches _sl ( 1! )

To computeR i. tlle following result is used (14) for the residue of l:(_)/p(¢)

•. \i, IeVJ = i(¢pl/p lop1 (07)
_p



PO0,, (,o I,OF " .....

where t and p are analytic at _p and t(_p) _ 0, p(_p) = 0 and p'(_p) :# 0. This gives

.. R 1= isgn(x- a)/a (98)

: R2 = - i sgn (x - a)/a (99)

• The results for b I , b2 are

: b I = eIn/4 _ (I00)

' b2 =-e I_/4_ (I01)

,_o where
i

' W --[r(_sl) - r(_p)]_i (102)
o ....

c,

"_',,. We havewrittenr(¢p)sincer(C_pl)= r(¢p2).

The substitutionoftheseresultsinto(93),showsthattwo termsofthesummationareidenticaland

,. ", equal to

Using the fact that( ! l )

i
and evaluating the remaining terms of (93), then

e_._- in/ it2 dt - _ e _'t + _/4

(105)

-" le'r,+t_/4 a-x egr2- t_/4 f a + x._l
• : \r, - z/j(x(r 2 + z)1

, where r I , r, are given by (801 and (871 and r/by (1021.

"i

From (781, (85/, and (1051 the total field, for x > O, is

"_ u_,x) ""l I +l 2 +e ikz [U(x + al- U_x -a)] (I061

, To refer to the four terms or( 1051, let l I = lla + lib + Iic + lid, As a check on _ I O(sl,notice that

14
.!



as x approaches a, i.e., as tile observer approaches the shadow boundary, 11b + I1 e = 0 and as tile

observer crosses the shadow boundary, the discontinuity in I I a exactly cancels the discontinuity in

: the geometrical optics field. Since 12 and the remaining term of I 1 are continuous, this implies that

the total field is continuous across the shadow boundary. For points away from the shadow

• boundary (k _4r/>> 1), Ila + lib is o(k -_i) and the 12 and the remaining terms ofl 1 yield the

standard asymptotic result.
?

Points on the z-axis, i.e. the axis passing through the center of the aperture, correspond to caustics

procedure described by Takenaka et al.(13) could be followed. However, we will not pu_r._!.e.t.he ..

problem here.

15
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CONCLUSIONS

" In an attempt to establish a correspondence between the M-R and GTD theories, an approximate

form of the vector potential has been derived through the use of the Braunbek method. For the

• aperture diffraction problem, the two theories predict similar results for observation points away

° from caustics and shadow boundaries. To examine the behavior ef the M*R results near the shadow

boundary an explicit calculation was performed for the simple case of a plane wave incident upon a

circular aperture. That the M-R field was continuous across the shadow boundary in this case,
-

I : : suggests that the vector potential given by (62) might yield reliable results near a shadow boundary
!
i for a more general incident wave.
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.....,_:_ Appendix: Diffraction from a half-plane

r:: o

...... ; It"an incident plane wave of the form
: ::"2

i = A e"jk¢'cjkpcos(¢--_)sinOo e-Jkzcosdo (All
:_:::._!.• uo .

is incident on a halt"plane the edge of which is aligned with the z-axis and oriented in the x-z plane
tb

o (x > 0), and if the total field, u, on the screen is zero, then the field at a point x is

_ u = ui - ur (A2)

where

i + Uh (A31:-::: ui= U(ei)uo

= r + u_ (A4)ur U(e r) u o

_:_ and_r,o

__:_, i i 1 e--Jk[o_Oo + z cOSao]....:.. u_i = - A e"jk¢ er K_[t2kpsin0o )½ I cos;(¢_-0o1 l] (AS)

i 1
i_'_. er = sgn [ cos._ (¢ :1:0o)] (A6)

_.._..:' _,,

' K_ (71= "r2 e-jr2 at (A7)"t

{Ix>0U(xl = 0x<0 (A81

: An ej_t time convention is used to obtain these results. Apart from some slight modifications -

:_' in particular, the addition of the factor A e"jk¢_which provides an amplitude and phase reference

for the graunbek method - the above formulas were obtained from James (91.

From equation {A 1L the direction of the incident wave, p, is

tb= - co_ o sin0 o i - sin0 o sin0 o _'+ co_ o i IAOl

The azimuthal angle 0,, is measured in a counterclockwise sense from the x-axis to the projection of

the vector-[_ onto the x-y plane, The polar angle Oo is measured between the i and Ibvectors. On

the other h,md. the coordinates of,m observation point x with respect to an origin on the edge of

the h;df-plane is

x -'-D cO,_ i + p sine ._'+ Z) IA It))

-" I"
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where

" p = [ x ]sinO (Al I)

z= t x I cos0 (A 12)

- The angle ¢_is measured,in a counterclockwise sense from the x-axis to the projection of the vector

x onto the x-y plane; 0 is the angle between i and x.

From (A3) and (A7)

ui=Ae "_' O'k[PC°S(C_o)_nOo-zc°sOo][u(ei)-Ir-½ei_/4_e-jt2dt] (AI3)"fl

where71 isgivenby theargumentofK_ in(A5)usingtheuppersign.

Since

to

I= Ir"_ ejT¢/4_ e"jr2dt (A14)

theexpressioninthebracketsof(A13)canbe rewrittenas

Ir"_ ejlr/4 _ e"jt2 dt (A 15)
Qt

where

°_l =-el q'l (AI6)

so that

Ui = AII"a_ e"jk_b+jn/4 e_[#cos(_-0o) _nOo -z cOS0o]_e-._ 2 dt (AI7)
0t t

Similarly

ur= A 11'"_ e"Jk_ �jn/+e_¢[pcos(Go) _n0o- zcos0o]_ e-Jr2 dt (A18)
r.I

where

c_ = - e r 72 (A 19)

and where _,. is the argument of K_ in (AS) using the lower sign.

18
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To account for the 8"_t convention used in the text, we substitute j = -i into (A 17) and (AI8).

This 8ires equations ( 131 of the text.
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